Stanford Home
Ovarian Kaleidoscope Database (OKdb)



Transgenic Mouse Models



Hsueh lab


since 01/2001:

BRCA1 associated RING domain 1 OKDB#: 3667
 Symbols: BARD1 Species: human
 Synonyms:  Locus: 2q34-q35 in Homo sapiens

For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!


DNA Microarrays
link to BioGPS
General Comment
General function Cell cycle regulation
Cellular localization Cytoplasmic
Ovarian function Oocyte maturation
Comment Maternal gene transcription in mouse oocytes: genes implicated in oocyte maturation and fertilization. Cui XS et al. Maternal gene expression is an important biological process in oocyte maturation and early cleavage. To gain insights into oocyte maturation and early embryo development, we used microarray analysis to compare the gene expression profiles of germinal vesicle (GV)- and metaphase II (MII)-stage oocytes. The differences in spot intensities were normalized and grouped using the Avadis Prophetic software platform. Of the 12164 genes examined, we found 1682 genes with more highly expression in GV-stage oocytes than in MII-stage oocytes, while 1936 genes were more highly expressed in MII-stage oocytes (P<0.05). The genes were grouped on the basis of the Panther classification system according to their involvement in particular biological processes. The genes that were up-regulated in GV oocytes were more likely to be involved in protein metabolism and modification, the mitotic cell cycle, electron transport, or fertilization or belong to the microtubule/cytoskeletal protein family. The genes specifically upregulated in the MII oocytes were more likely to be involved in DNA replication, amino acid metabolism, or expression of G protein-coupled receptors and signaling molecules. Identification of genes that are preferentially expressed at particular oocyte maturation stages provides insights into the complex gene regulatory networks that drive oocyte maturation and fertilization. This gene is regulated between GC and MII stages.
Expression regulated by
Ovarian localization Oocyte, Granulosa
Comment Ubiquitination and Proteasome-Mediated Degradation of BRCA1 and BARD1 During Steroidogensis in Human Ovarian Granulosa Cells Lu Y, et al . Germ-line mutations in BRCA1 predispose women to early onset, familial breast and ovarian cancers. However, BRCA1 expression is not restricted to breast and ovarian epithelial cells. For example, ovarian BRCA1 expression is enriched in ovarian granulosa cells, which are responsible for ovarian estrogen production in premenopausal women. Furthermore, recent tissue culture and animal studies suggest a functional role of BRCA1 in ovarian granulosa cells. While levels of BRCA1 are known to fluctuate significantly during folliculogenesis and steroidogensis, the mechanism by which BRCA1 expression is regulated in granulosa cells remains to be elucidated. Here we show that the ubiquitin-proteasome degradation pathway plays a significant role in the coordinated protein stability of BRCA1 and its partner BARD1 in ovarian granulosa cells. Our work identifies the amino-terminal RING domain-containing region of BRCA1 as the degron sequence that is both necessary and sufficient for polyubiquitination and proteasome-mediated protein degradation. Interestingly, mutations in the RING domain that abolish the ubiquitin E3 ligase activity of BRCA1 do not affect its own ubiquitination or degradation in ovarian granulosa cells. The proteasome-mediated degradation of BRCA1 and BARD1 also occurs during the cAMP-dependent steroidogenic process. Thus, the dynamic changes of BRCA1/BARD1 protein stability in ovarian granulosa cells provide an excellent paradigm for investigating the regulation of this protein complex under physiological conditions.
Follicle stages Antral
Comment Identifying new human oocyte marker genes: a microarray approach. Gasca S et al. The efficacy of classical IVF techniques is still impaired by poor implantation and pregnancy rates after embryo transfer. This is mainly due to a lack of reliable criteria for the selection of embryos with sufficient development potential. Several studies have provided evidence that some gene expression levels could be used as objective markers of oocyte and embryo competence and capacity to sustain a successful pregnancy. These analyses usually use reverse transcription-polymerase chain reaction to look at small sets of pre-selected genes. However, microarray approaches allow the identification of a wider range of cellular marker genes which could include additional and perhaps more suitable genes that could serve as embryo selection markers. Microarray screenings of around 30,000 genes on U133P Affymetrix(trade mark)gene chips made it possible to establish the expression profile of these genes as well as other related genes in human oocytes and cumulus cells. This study identifies new potential regulators and marker genes such as BARD1, RBL2, RBBP7, BUB3 or BUB1B, which are involved in oocyte maturation.
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Reprogenomic viewer show phenotypes and GWAshow RNAseq data and genomic region in Reprogenomic viewer site
(After opening the Reprogenomics Viewer site, select your gene and click on Chromosome + Link)
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
Search for Antibody
blog comments powered by Disqus
Related Genes
Show data ...

created: Dec. 24, 2006, 7:36 p.m. by: hsueh   email:
home page:
last update: Feb. 20, 2013, 2:58 p.m. by: hsueh    email:

Use the back button of your browser to return to the Gene List.

Click here to return to gene search form