Stanford Home
Ovarian Kaleidoscope Database (OKdb)



Transgenic Mouse Models



Hsueh lab


since 01/2001:

macrophage stimulating 1 OKDB#: 862
 Symbols: MST1 Species:
 Synonyms: MSP, HGFL, NF15S2, D3F15S2, DNF15S2  Locus: 3p21 in Homo sapiens

For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!


DNA Microarrays
link to BioGPS
General Comment

NCBI Summary: The protein encoded by this gene contains four kringle domains and a serine protease domain, similar to that found in hepatic growth factor. Despite the presence of the serine protease domain, the encoded protein may not have any proteolytic activity. The receptor for this protein is RON tyrosine kinase, which upon activation stimulates ciliary motility of ciliated epithelial lung cells. This protein is secreted and cleaved to form an alpha chain and a beta chain bridged by disulfide bonds. [provided by RefSeq, Jan 2010]
General function
Cellular localization
Ovarian function
Expression regulated by
Ovarian localization tumor cells
Comment Shigemasa K, et al. reported that The mRNA expression level of p16 was significantly elevated in 28 ovarian tumors (22 carcinomas, five low malignant potential tumors, and one benign tumor) compared with that of normal ovaries. Western blotting analysis and immunohistochemical staining confirmed elevated p16 protein levels in ovarian tumor samples. Among 32 ovarian tumors, cDNA sequencing of the p16 gene showed no p16 mutation resulting in a coding error, although one silent mutation and three polymorphisms were found. Although p16 is seldom mutated in ovarian tumors, the overexpression of p16 in most ovarian tumor cases indicates a dysfunction in the regulatory complex for G1 arrest. Therefore, overexpression of p16 may be an important early event in the neoplastic transformation of the ovarian epithelium.
Follicle stages germ stem cells
Comment Ovarian Germline Stem Cells (OGSCs) and the Hippo Signaling Pathway Association with Physiological and Pathological Ovarian Aging in Mice. Li J et al. (2015) The Hippo signaling pathway plays fundamental roles in stem cell maintenance in a variety of tissues and has thus implications for stem cell biology. Key components of this recently discovered pathway have been shown to be associated with primordial follicle activation. However, whether the Hippo signaling pathway plays a role in the development of Ovarian Germline Stem Cells (OGSCs) during physiological and pathological ovarian aging in mice is unknown. Mice at the age of 7 days (7D), or of 2, 10, or 20 months (2M, 10M, 20M) and mice at 2M treated with TPT and CY/BUS drugs were selected as physiological and pathological ovarian aging models, respectively. Immunohistochemistry was used to assess the development of follicles, and the co-localization of genes characteristic of OGSCs with MST1, LATS2 and YAP1 was assessed by immunofluorescence, western blotting and real-time PCR methods. The Hippo signal pathway and MVH/OCT4 genes were co-expressed in the mouse ovarian cortex. The level and co-localization of LATS2, MST1, MVH, and OCT4 were significantly decreased with increased age, but YAP1 was more prevalent in the mouse ovarian cortex of 2M mice than 7D mice and was not observed in 20M mice. Furthermore, YAP1, MVH, and OCT4 were gradually decreased after TPT and CY/BUS treatment, and LATS2 mRNA and protein up-regulation persisted in TPT- and CY/BUS-treated mice. However, the expression of MST1 was lower in the TPT and CY/BUS groups compared with the control group. In addition, pYAP1 protein showed the highest expression in the ovarian cortexes of 7D mice compared with 20M mice, and the value of pYAP1/YAP1 decreased from 7D to 20M. Moreover, pYAP1 decreased in the TPT- and CY/BUS-treated groups, but the value of pYAP1/YAP1 increased in these groups. Taken together, our results show that the Hippo signaling pathway is associated with the changes that take place in OGSCs during physiological and pathological ovarian aging in mice. Thus, the Hippo signaling pathway may be involved in the development schedule of OGSCs. © 2015 S. Karger AG, Basel.//////////////////
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Reprogenomic viewer show phenotypes and GWAshow RNAseq data and genomic region in Reprogenomic viewer site
(After opening the Reprogenomics Viewer site, select your gene and click on Chromosome + Link)
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
Search for Antibody
blog comments powered by Disqus
Related Genes
Show data ...

created: Feb. 18, 2000, midnight by: genetron   email:
home page:
last update: July 23, 2015, 8:14 a.m. by: hsueh    email:

Use the back button of your browser to return to the Gene List.

Click here to return to gene search form